Skip to Main Content (Press Enter)
BECOME A BOOK EXPERT 📚
The Math You Need by Thomas Mack
Add The Math You Need to bookshelf
Add to Bookshelf

The Math You Need

Best Seller
The Math You Need by Thomas Mack
Paperback $55.00
Oct 31, 2023 | ISBN 9780262546324
See All Formats (2) +

Product Details

Table Of Contents

Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
1 Group Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Definitions and Examples . . . . . . . . . . . . . . . . . . 1
1.2 Subgroups and Group Homomorphisms . . . . . . . . . . 4
1.3 Group Constructions . . . . . . . . . . . . . . . . . . . . 8
1.4 The Isomorphism Theorems . . . . . . . . . . . . . . . . 13
1.5 Group Actions . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Cyclic Groups . . . . . . . . . . . . . . . . . . . . . . . . 16
1.7 Permutation Groups . . . . . . . . . . . . . . . . . . . . . 20
1.8 p-Groups and the Sylow Theorems . . . . . . . . . . . . . 27
1.9 Solvable and Nilpotent Groups . . . . . . . . . . . . . . . 30
1.10 Free Groups and Presentations . . . . . . . . . . . . . . . 35
1.11 Further Topics . . . . . . . . . . . . . . . . . . . . . . . . 39
1.12 Further Reading . . . . . . . . . . . . . . . . . . . . . . . 40
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2 Commutative Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.1 Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2 Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.5 Module Constructions . . . . . . . . . . . . . . . . . . . . 60
2.6 Noetherian Modules . . . . . . . . . . . . . . . . . . . . . 63
2.7 Prime and Maximal Ideals . . . . . . . . . . . . . . . . . 66
2.8 Localization . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.9 Gauss’s Lemma . . . . . . . . . . . . . . . . . . . . . . . 76
2.10 Principal Ideal Domains . . . . . . . . . . . . . . . . . . 78
2.11 Field Extensions . . . . . . . . . . . . . . . . . . . . . . . 85
2.12 Finite Fields . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.13 Further Topics . . . . . . . . . . . . . . . . . . . . . . . . 92
2.14 Further Reading . . . . . . . . . . . . . . . . . . . . . . . 93
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3 Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.1 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . 99
viii Contents
3.2 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.3 Vector Space Constructions . . . . . . . . . . . . . . . . . 107
3.4 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . 111
3.5 The Determinant . . . . . . . . . . . . . . . . . . . . . . 115
3.6 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.7 Matrix Operations . . . . . . . . . . . . . . . . . . . . . . 125
3.8 Inner Product Spaces . . . . . . . . . . . . . . . . . . . . 131
3.9 Matrix Decompositions . . . . . . . . . . . . . . . . . . . 138
3.10 Further Topics . . . . . . . . . . . . . . . . . . . . . . . . 142
3.11 Further Reading . . . . . . . . . . . . . . . . . . . . . . . 143
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.1 Definitions and Examples . . . . . . . . . . . . . . . . . . 149
4.2 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.3 Topological Space Constructions . . . . . . . . . . . . . . 156
4.4 Separation Axioms . . . . . . . . . . . . . . . . . . . . . 159
4.5 Connectedness . . . . . . . . . . . . . . . . . . . . . . . 163
4.6 Compactness . . . . . . . . . . . . . . . . . . . . . . . . 166
4.7 Tychonoff’s Theorem . . . . . . . . . . . . . . . . . . . . 170
4.8 Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . 173
4.9 Completeness . . . . . . . . . . . . . . . . . . . . . . . . 179
4.10 Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . 182
4.11 Further Topics . . . . . . . . . . . . . . . . . . . . . . . . 186
4.12 Further Reading . . . . . . . . . . . . . . . . . . . . . . . 188
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5 Real Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
5.1 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
5.2 Infinite Series . . . . . . . . . . . . . . . . . . . . . . . . 197
5.3 Uniform Convergence . . . . . . . . . . . . . . . . . . . . 200
5.4 Differentiation on R . . . . . . . . . . . . . . . . . . . . . 204
5.5 Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . . . 210
5.6 Measurable Spaces . . . . . . . . . . . . . . . . . . . . . 214
5.7 Measurable Functions . . . . . . . . . . . . . . . . . . . . 217
5.8 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 222
5.9 Measure Extensions . . . . . . . . . . . . . . . . . . . . . 230
5.10 Borel Measure . . . . . . . . . . . . . . . . . . . . . . . . 235
5.11 The Fundamental Theorem of Calculus . . . . . . . . . . 238
Contents ix
5.12 Further Topics . . . . . . . . . . . . . . . . . . . . . . . . 242
5.13 Further Reading . . . . . . . . . . . . . . . . . . . . . . . 244
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 246
6 Multivariable Analysis . . . . . . . . . . . . . . . . . . . . . . . . 249
6.1 Multivariable Differentiation . . . . . . . . . . . . . . . . 249
6.2 Multivariable Integration . . . . . . . . . . . . . . . . . . 256
6.3 The Change of Variables Formula . . . . . . . . . . . . . 259
6.4 Differential Equations . . . . . . . . . . . . . . . . . . . . 265
6.5 Common Derivatives and Integrals . . . . . . . . . . . . . 268
6.6 The Gaussian Integral . . . . . . . . . . . . . . . . . . . . 272
6.7 The Weierstrass Approximation Theorem . . . . . . . . . 276
6.8 The Constant Rank Theorem . . . . . . . . . . . . . . . . 284
6.9 Further Topics . . . . . . . . . . . . . . . . . . . . . . . . 290
6.10 Further Reading . . . . . . . . . . . . . . . . . . . . . . . 292
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 293
7 Complex Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
7.1 Contour Integrals . . . . . . . . . . . . . . . . . . . . . . 296
7.2 The Jordan Curve Theorem . . . . . . . . . . . . . . . . . 302
7.3 The Topology of Contours . . . . . . . . . . . . . . . . . 308
7.4 Green’s Theorem . . . . . . . . . . . . . . . . . . . . . . 316
7.5 The Cauchy–Riemann Equations . . . . . . . . . . . . . . 321
7.6 Cauchy’s Integral Formula . . . . . . . . . . . . . . . . . 324
7.7 Consequences of Cauchy’s Integral Formula . . . . . . . . 327
7.8 Meromorphic Functions . . . . . . . . . . . . . . . . . . . 332
7.9 Residues . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
7.10 The Open Mapping Theorem . . . . . . . . . . . . . . . . 341
7.11 Tauberian Theorems . . . . . . . . . . . . . . . . . . . . 345
7.12 Further Topics . . . . . . . . . . . . . . . . . . . . . . . . 348
7.13 Further Reading . . . . . . . . . . . . . . . . . . . . . . . 349
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 351
8 Number Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
8.1 Galois Theory . . . . . . . . . . . . . . . . . . . . . . . . 353
8.2 Algebraic Integers . . . . . . . . . . . . . . . . . . . . . . 359
8.3 Prime Factorization in Ok . . . . . . . . . . . . . . . . . . 363
8.4 Quadratic Fields . . . . . . . . . . . . . . . . . . . . . . . 368
8.5 Cyclotomic Extensions . . . . . . . . . . . . . . . . . . . 371
8.6 Diophantine Equations . . . . . . . . . . . . . . . . . . . 373
8.7 Quadratic Reciprocity . . . . . . . . . . . . . . . . . . . . 378
8.8 Solvability by Radicals . . . . . . . . . . . . . . . . . . . 381
8.9 The Riemann ζ-Function . . . . . . . . . . . . . . . . . . 386
8.10 The Prime Number Theorem . . . . . . . . . . . . . . . . 390
8.11 Further Topics . . . . . . . . . . . . . . . . . . . . . . . . 394
8.12 Further Reading . . . . . . . . . . . . . . . . . . . . . . . 396
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 398
9 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
9.1 Definitions and Constructions . . . . . . . . . . . . . . . . 401
9.2 Densities . . . . . . . . . . . . . . . . . . . . . . . . . . 404
9.3 Lp spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 408
9.4 The Radon–Nikodym Theorem . . . . . . . . . . . . . . . 413
9.5 Mean and Variance . . . . . . . . . . . . . . . . . . . . . 417
9.6 Joint Density Functions . . . . . . . . . . . . . . . . . . . 422
9.7 Common Probability Distributions . . . . . . . . . . . . . 425
9.8 Convergence of Distributions . . . . . . . . . . . . . . . . 432
9.9 Higher Moments and Characteristic Functions . . . . . . . 438
9.10 The Central Limit Theorem . . . . . . . . . . . . . . . . . 444
9.11 Further Topics . . . . . . . . . . . . . . . . . . . . . . . . 445
9.12 Further Reading . . . . . . . . . . . . . . . . . . . . . . . 447
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 448
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
A.1 Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 451
A.2 The Axiom of Choice . . . . . . . . . . . . . . . . . . . . 455
A.3 Cardinality . . . . . . . . . . . . . . . . . . . . . . . . . 459
A.4 Real and Complex Numbers . . . . . . . . . . . . . . . . 463
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

undefined