Skip to Main Content (Press Enter)
Perturbations, Optimization, and Statistics by
Add Perturbations, Optimization, and Statistics to bookshelf
Add to Bookshelf

Perturbations, Optimization, and Statistics

Best Seller
Perturbations, Optimization, and Statistics by
Paperback $70.00
Dec 05, 2023 | ISBN 9780262549943

Buy from Other Retailers:

  • $70.00

    Dec 05, 2023 | ISBN 9780262549943

    Buy from Other Retailers:

Product Details

Table Of Contents

Preface ix
1 Introduction 1
Tamir Hazan, George Papandreou, and Daniel Tarlow
1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 Perturb-and-MAP Random Fields 17
George Papandreou and Alan L. Yuille
2.1 Energy-Based Models: Deterministic vs. Probabilistic Approaches . . . . . . . . . . . . . . . .  19
2.2 Perturb-and-MAP for Gaussian and Sparse Continuous MRFs 23
2.3 Perturb-and-MAP for MRFs with Discrete Labels . . . . . . . 28
2.4 On the Representation Power of the Perturb-and-MAP Model 35
2.5 Related Work and Recent Developments . . . . . . . . . . . . 38
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3 Factorizing Shortest Paths with Randomized Optimum Models 45
Daniel Tarlow, Alexander Gaunt, Ryan Adams, and Richard S. Zemel
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Building Structured Models: Design Considerations . . . . . . 47
3.3 Randomized Optimum Models (RandOMs) . . . . . . . . . . . 48
3.4 Learning RandOMs . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 RandOMs for Image Registration . . . . . . . . . . . . . . . . 56
3.6 Shortest Path Factorization . . . . . . . . . . . . . . . . . . . 56
3.7 Shortest Path Factorization with RandOMs . . . . . . . . . . 58
3.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4 Herding as a Learning System with Edge-of-Chaos Dynamics 73
Yutian Chen and Max Welling
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Herding Model Parameters . . . . . . . . . . . . . . . . . . . . 77
4.3 Generalized Herding . . . . . . . . . . . . . . . . . . . . . . . 99
4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5 Learning Maximum A-Posteriori Perturbation Models 127
Andreea Gane, Tamir Hazan, and Tommi Jaakkola
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2 Background and Notation . . . . . . . . . . . . . . . . . . . . 130
5.3 Expressive Power of Perturbation Models . . . . . . . . . . . . 131
5.4 Higher Order Dependencies . . . . . . . . . . . . . . . . . . . 132
5.5 Markov Properties and Perturbation Models . . . . . . . . . . 134
5.6 Conditional Distributions . . . . . . . . . . . . . . . . . . . . . 136
5.7 Learning Perturbation Models . . . . . . . . . . . . . . . . . . 141
5.8 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.9 Perturbation Models and Stability . . . . . . . . . . . . . . . . 152
5.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6 On the Expected Value of Random Maximum A-Posteriori Perturbations 161
Tamir Hazan and Tommi Jaakkola
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.2 Inference and Random Perturbations . . . . . . . . . . . . . . 164
6.3 Low-Dimensional Perturbations . . . . . . . . . . . . . . . . . 169
6.4 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . 182
6.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7 A Poisson Process Model for Monte Carlo 193
Chris J. Maddison
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.2 Poisson Processes . . . . . . . . . . . . . . . . . . . . . . . . . 196
7.3 Exponential Races . . . . . . . . . . . . . . . . . . . . . . . . 203
7.4 Gumbel Processes . . . . . . . . . . . . . . . . . . . . . . . . . 210
7.5 Monte Carlo Methods That Use Bounds . . . . . . . . . . . . 216
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
7.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
8 Perturbation Techniques in Online Learning and Optimization 233
Jacob Abernethy, Chansoo Lee, and Ambuj Tewari
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
8.3 Gradient-Based Prediction Algorithm . . . . . . . . . . . . . . 237
8.4 Generic Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 245
8.5 Experts Setting . . . . . . . . . . . . . . . . . . . . . . . . . . 247
8.6 Euclidean Balls Setting . . . . . . . . . . . . . . . . . . . . . . 252
8.7 The Multi-Armed Bandit Setting . . . . . . . . . . . . . . . . 254
8.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
9 Probabilistic Inference by Hashing and Optimization 265
Stefano Ermon
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
9.2 Problem Statement and Assumptions . . . . . . . . . . . . . . 268
9.3 Approximate Model Counting via Randomized Hashing . . . . 270
9.4 Probabilistic Models and Approximate Inference: The WISH Algorithm . . . . . . . . . . .  274
9.5 Optimization Subject to Parity Constraints . . . . . . . . . . 279
9.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
9.7 Open Problems and Research Challenges . . . . . . . . . . . . 282
9.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
9.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
10 Perturbation Models and PAC-Bayesian Generalization Bounds 289
Joseph Keshet, Subhransu Maji, Tamir Hazan, and Tommi Jaakkola
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
10.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
10.3 PAC-Bayesian Generalization Bounds . . . . . . . . . . . . . 294
10.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
10.5 The Bayesian Perspective . . . . . . . . . . . . . . . . . . . . 298
10.6 Approximate Inference . . . . . . . . . . . . . . . . . . . . . 301
10.7 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . 302
10.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
10.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
11 Adversarial Perturbations of Deep Neural Networks 311
David Warde-Farley and Ian Goodfellow
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
11.2 Adversarial Examples . . . . . . . . . . . . . . . . . . . . . . 312
11.3 Adversarial Training . . . . . . . . . . . . . . . . . . . . . . . 329
11.4 Generative Adversarial Networks . . . . . . . . . . . . . . . . 330
11.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
11.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
12 Data Augmentation via L´evy Processes 343
Stefan Wager, William Fithian, and Percy Liang
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
12.2 L´evy Thinning . . . . . . . . . . . . . . . . . . . . . . . . . . 349
12.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
12.4 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . 365
12.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
12.6 Appendix: Proof of Theorem 12.4 . . . . . . . . . . . . . . . 369
12.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
13 Bilu-Linial Stability 375
Konstantin Makarychev and Yury Makarychev
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
13.2 Stable Instances of Graph Partitioning Problems . . . . . . . 380
13.3 Stable Instances of Clustering Problems . . . . . . . . . . . . 391
13.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

Looking for More Great Reads?
21 Books You’ve Been Meaning to Read
Back to Top